Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Exp Hematol Oncol ; 13(1): 20, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388466

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS: In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS: We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS: Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.

2.
Mol Biol Rep ; 51(1): 228, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281294

RESUMO

BACKGROUND: The crucial role of STOML2 in tumor progression has been documented recently in various cancers. Previous studies have shown that STOML2 promoted cancer cell proliferation, but the underlying mechanism is not fully illustrated. METHODS AND RESULTS: The expression and clinical relevance of STOML2 in pan-cancer was analyzed by TIMER2 web platform in pan-cancer. The prognostic significance of STOML2 in HCC was evaluated utilizing KM curve and a nomogram model. Signaling pathways associated with STOML2 expression were discovered by GSEA. CCK-8 assay was performed to evaluate the proliferative capacity of HCC cells after manipulating STOML2 expression. Flow cytometry was utilized to analyze cell cycle progression. Results indicated that increased STOML2 expression in HCC linked to unfavorable clinical outcomes. Cell cycle and cell division related terms were enriched under conditions of elevated STOML2 expression via GSEA analysis. A notable decrease in cell proliferation was observed in MHCC97H with STOML2 knocked-down, accompanied by G1-phase arrest, up-regulation of p21, down-regulation of CyclinD1 and its regulatory factor MYC, while STOML2 overexpression in Huh7 showed the opposite results. These results indicated that STOML2 was responsible for HCC proliferation by regulating the expression level of MYC/cyclin D1 and p21. Furthermore, an inverse correlation was found between STOML2 expression and 5-FU sensitivity. CONCLUSIONS: STOML2 promotes cell cycle progression in HCC which is associated with activation of MYC/CyclinD1/p21 pathway, and modulates the response of HCC to 5-FU.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fluoruracila/farmacologia , Transdução de Sinais , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Ultraschall Med ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081211

RESUMO

PURPOSE: We investigated the optimal number of valid measurements (VMs) for the attenuation coefficient (AC) to assess liver steatosis using attenuation imaging (ATI) and explored factors that may affect AC measurement in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). MATERIALS AND METHODS: A total of 139 patients with MAFLD who underwent ATI and liver biopsy were enrolled. Hepatic steatosis was graded as S0-3 according to the SAF scoring system. The AC values from 1, 2, 3, 5, and 7 VMs were compared with the degree of liver steatosis. The correlation between AC values from different VMs was analyzed. The diagnostic performance of AC from different VMs at each steatosis grade was compared. The factors related to AC were identified using linear regression analysis. RESULTS: The mean AC values from 1, 2, 3, 5, and 7 VMs were not significantly different between grades S0-3 (p=n.s. for all). Bland-Altman analysis showed the mean difference in AC values of 3 VMs and 7 VMs was 0.003 dB/cm/MHz, which was smaller compared with 2 VMs, and close to 5 VMs. The intraclass correlation coefficients of AC were all > 0.90 among different VM groups. AC values from different VMs all significantly predicted steatosis grade ≥S1, ≥S2, and S3 without significant statistical differences (p=n.s. for all). The multivariate analysis showed that the hepatic steatosis grade and triglyceride level were factors independently associated with AC. CONCLUSION: Three valid measurements of AC may be adequate to ensure the accuracy and reproducibility of hepatic steatosis assessment. The degree of liver steatosis and the triglyceride level significantly affected AC values.

4.
Int J Surg ; 109(11): 3506-3518, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578492

RESUMO

BACKGROUND: The value of existing prognostic models for intrahepatic cholangiocarcinoma is limited. The inclusion of prognostic gene mutations would enhance the predictive efficacy. METHODS: In the screening cohorts, univariable Cox regression analysis was applied to investigate the effect of individual mutant genes on overall survival (OS). In the training set, multivariable analysis was performed to evaluate the independent prognostic roles of the clinicopathological and mutational parameters, and a prognostic model was constructed. Internal and external validations were conducted to evaluate the performance of this model. RESULTS: Among the recurrent mutations, only TP53 and KRASG12 were significantly associated with OS across all three screening cohorts. In the training cohort, TP53 and KRASG12 mutations in combination with seven other clinical parameters (tumor size, tumor number, vascular invasion, lymph node metastasis, adjacent invasion, CA19-9, and CEA), were independent prognostic factors for OS. A mutation-annotated prognostic score (MAPS) was established based on the nine prognosticators. The C-indices of MAPS (0.782 and 0.731 in the internal and external validation cohorts, respectively) were statistically higher than those of other existing models ( P <0.05). Furthermore, the MAPS model also demonstrated significant value in predicting the possible benefits of upfront surgery and adjuvant therapy. CONCLUSIONS: The MAPS model demonstrated good performance in predicting the OS of intrahepatic cholangiocarcinoma patients. It may also help predict the possible benefits of upfront surgery and adjuvant therapy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Prognóstico , Estudos Retrospectivos , Colangiocarcinoma/genética , Colangiocarcinoma/cirurgia , Ductos Biliares Intra-Hepáticos/cirurgia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/cirurgia , Mutação
5.
Cell Oncol (Dordr) ; 46(2): 283-297, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36454514

RESUMO

PURPOSE: Recently, aberrant glycosylation has been recognized to be relate to malignant behaviors of cancer and outcomes of patients with various cancers. SLC35A2 plays an indispensable role on glycosylation as a nucleotide sugar transporter. However, effects of SLC35A2 on malignant behaviors of cancer cells and alteration of cancer cells surface glycosylation profiles are still not fully understood, particularly in hepatocellular carcinoma (HCC). Hence, from a glycosylation perspective, we investigated the effects of SLC35A2 on metastatic behaviors of HCC cells. METHODS: SLC35A2 expression in clinical samples and HCC cells was examined by immunohistochemical staining or Western blot/quantitative PCR and was regulated by RNA interference or vectors-mediated transfection. Effects of SLC35A2 expression alteration on metastatic behaviors and membrane glycan profile of HCC cells were observed by using respectively invasion, migration, cell adhesion assay, in vivo lung metastatic nude mouse model and lectins microarray. Co-location among proteins in HCC cells was observed by fluorescence microscope and detected by an in vitro co-immunoprecipitation assay. RESULTS: SLC35A2 was upregulated in HCC tissues, and is associated with poor prognosis of HCC patients. SLC35A2 expression alteration significantly affected the invasion, adhesion, metastasis and membrane glycan profile and led to the dysregulated expressions or glycosylation of cell adhesion-related molecules in HCC cells. Mechanistically, the maintenance of SLC35A2 activity is critical for the recruitment of the key galactosyltransferase B4GalT1, which is responsible for complex glycoconjugate and lactose biosynthesis, to Golgi apparatus in HCC cells. CONCLUSION: SLC35A2 plays important roles in promoting HCC metastasis by regulating cellular glycosylation modification and inducing the cell adhesive ability of HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Transporte de Monossacarídeos , Proteínas de Transporte de Nucleotídeos , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Glicosilação , Neoplasias Hepáticas/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Transporte de Nucleotídeos/metabolismo , Nucleotídeos/metabolismo , Polissacarídeos , Açúcares/metabolismo
7.
J Cancer ; 13(11): 3221-3233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118521

RESUMO

Background: Hepatocellular carcinoma (HCC) is the most common form of liver cancer, and significant sex disparities have been observed in HCC. We aim to explore the potential sex-biased mechanisms involved in hepatocarcinogenesis. Methods: Based on TCGA data, we compared clinical features, genetic alterations, and immune cell infiltrations between male and female HCC patients. In addition, we performed sex-based differential expression analysis and functional enrichment analysis. Finally, GSE64041 dataset and another HCC cohort were engaged to validate our findings. Results: Significant differences of genetic alterations and TME were observed between male and female HCC patients. Enhanced metabolism of lipids was associated with hepatocarcinogenesis in men, while ECM-organization-related pathways were correlated to HCC development in women. BEX4 was upregulated in female but downregulated in male HCC patients, and was positively correlated with immune checkpoint molecules and infiltrated immune cell. These findings were further validated in dataset GSE64041 and our HCC cohort. More importantly, a negative correlation was found between BEX4 expression and lenvatinib sensitivity. Conclusion: Distinct biological processes were involved in sex-biased tumorigenesis of HCC. BEX4 can be targeted to improve the efficacy of lenvatinib plus immune checkpoint inhibitors.

8.
J Exp Clin Cancer Res ; 41(1): 284, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163032

RESUMO

BACKGROUND: Oxidative stress is a highly active metabolic process in the liver, that poses great threats to disseminated tumor cells during their colonization. Here, we aimed to investigate how colorectal cancer (CRC) cells overcome lipid peroxidation to sustain their metastatic colonization in the liver. METHODS: Orthotopic colorectal liver metastasis (CRLM) and CRC liver colonization mouse models were constructed to determine the roles of lipid peroxidation and AADAC in CRC liver colonization. The levels of lipid peroxidation were detected in cells or tissues. AADAC overexpression in LMs and its clinical relevance were analyzed. The oncogenic role of AADAC in CRC liver colonization was evaluated in cell experiments. RESULTS: Compared with primary tumors (PTs), liver metastases (LMs) showed significantly lower glutathione to oxidized glutathione (GSH/GSSG) ratio and higher malondialdehyde (MDA) levels in CRLM patients and orthotopic mouse models. Inhibition of lipid peroxidation by liproxstatin-1 promoted CRC liver colonization in mouse models. RNA-seq results revealed AADAC as the most significantly upregulated lipid metabolism related gene in LMs compared with PTs. Analyses of datasets and patient and mouse model samples confirmed that AADAC was upregulated in LMs compared with PTs, and was correlated with poor prognosis. AADAC promoted cell proliferation, and facilitated liver colonization in a mouse model by reducing ROS accumulation, which led to lipid peroxidation and ferroptosis. Mechanistically, AADAC upregulated SLC7A11 by activating NRF2 to inhibit lipid peroxidation, thereby protecting metastatic cells from ferroptosis. CONCLUSIONS: AADAC protects metastatic CRC cells from ferroptosis by inhibiting lipid peroxidation in an SLC7A11-dependent manner, thus effectively promoting their metastatic colonization and growth in the liver. Together, our findings suggest that AADAC can act as a prognostic indicator and potential therapeutic target for CRLM.


Assuntos
Neoplasias Colorretais , Ferroptose , Neoplasias Hepáticas , Sistema y+ de Transporte de Aminoácidos , Animais , Hidrolases de Éster Carboxílico , Neoplasias Colorretais/genética , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Peroxidação de Lipídeos , Neoplasias Hepáticas/genética , Malondialdeído , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Ann Transl Med ; 10(12): 689, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35845518

RESUMO

Background: Cell adhesion molecule cluster of differentiation 44 (CD44) plays a significant role in cancer cell local invasion, intravasation, migration, and the establishment of metastatic lesions. However, little is known about the underlying mechanism of how CD44 regulates hepatocellular carcinoma (HCC) extrahepatic metastasis (EHM). Methods: The expression of CD44 in HCC tissues and cell lines was detected through western blot and immunohistochemistry (IHC). Through gain- and loss-of-function assays, we examined the oncogenic roles of CD44 in regulating HCC cell growth and metastasis in vitro and in vivo. To identify the potential mechanism, we employed quantitative real-time polymerase chain reaction, and western blot. Results: In this study, CD44 was highly expressed in HCC cells and HCC-patient specimens that exhibited high malignancy potential. The overall survival (OS) was worse and the cumulative recurrence rate was higher in HCC patients with CD44 overexpression than those with low levels of CD44 expression. Our in-vitro and in-vivo experiments showed that CD44 downregulation reduced HCC cell colony formation, migration, and invasion, and HCC tumor growth and metastasis, and that the pro-metastasis effect of CD44 was mediated by the protein kinase B (AKT)/extracellular signal-regulated kinase (ERK) signaling-chemokine receptor C-X-C chemokine receptor type 4 (CXCR4) axis. The reported capacity of CD44 to induce CXCR4 expression and increase the propensity of tumors to invade and metastasize to distant organs is consistent with the aggressive clinical characteristics of HCCs. Conclusions: CD44 could represent a future therapeutic target for EHM.

10.
Cell Rep ; 39(3): 110712, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35443161

RESUMO

Aberrant activation of receptor tyrosine kinases (RTKs) and the subsequent metabolic reprogramming play critical roles in cancer progression. Our previous study has shown that Golgi membrane protein 1 (GOLM1) promotes hepatocellular carcinoma (HCC) metastasis by enhancing the recycling of RTKs. However, how this RTK recycling process is regulated and coupled with RTK degradation remains poorly defined. Here, we demonstrate that cholesterol suppresses the autophagic degradation of RTKs in a GOLM1-dependent manner. Further mechanistic studies reveal that GOLM1 mediates the selective autophagy of RTKs by interacting with LC3 through an LC3-interacting region (LIR), which is regulated by a cholesterol-mTORC1 axis. Lowering cholesterol by statins improves the efficacy of multiple tyrosine kinase inhibitors (TKIs) in vivo. Our findings indicate that cholesterol serves as a signal to switch GOLM1-RTK degradation to GOLM1-RTK recycling and suggest that lowering cholesterol by statin may be a promising combination strategy to improve the TKI efficiency in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Autofagia , Carcinoma Hepatocelular/patologia , Colesterol , Humanos , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Receptores Proteína Tirosina Quinases
11.
J Cancer ; 13(4): 1261-1271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281873

RESUMO

Background: Neutrophil extracellular traps (NETs) are net like extracellular structure formed by neutrophils in response to certain stimulation. It works as inflammatory regulator and metastasis promoter in cancer. Mitochondrial-(mt)DNA is a circular, mitochondria derived double strain molecule, which is involved in NETs formation. Its role in NETs induced inflammatory alteration in hepatocellular carcinoma (HCC) remained unexplored. Method: We evaluated the mitochondrial reactive oxygen species (mitoROS) level in peripheral neutrophils from HCC patients and the oxidative level of mtDNA in derived NETs. The association between the NETs and oxidized mtDNA was assessed to reveal their relevance. A function assay was applied to uncover how the oxidation state of mtDNA directed the metastasis promoting inflammation state in HCC cells in a NETs protein dependent manner. Finally, using animal models, we explored the potential of a therapy strategy against NETs-drove metastasis by targeting the oxidized mtDNA with metformin. Results: Neutrophils in HCC patients contained high level of mitoROS level, and formed NETs that were enriched in oxidized mtDNA in a mitoROS dependent manner. NETs and oxidized mtDNA were clinically relevant. Bound with NETs protein, oxidized mtDNA is more capable of triggering the metastasis-promoting inflammatory mediators in HepG2 cells. Targeting the oxidized mtDNA with metformin attenuated the metastasis-promoting inflammatory state and hereby undermine the metastasis capacity of HCC. Conclusion: HCC is capable to stimulate NETs enriched in oxidized mtDNA, which are highly pro-inflammatory and pro-metastatic. Oxidized mtDNA in NETs may serve as a potential anti-metastatic target by metformin therapy.

12.
J Surg Oncol ; 125(6): 991-1001, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35150441

RESUMO

BACKGROUND: The clinicopathological and prognostic significance of human epidermal growth factor receptor 2 (HER2) status in surgically resected colorectal liver metastases (CRLM) remains uncertain. METHODS: HER2 expression was evaluated by immunohistochemical (IHC) in two CRLM tissue microarrays (TMAs). For samples with an IHC score of 2+ or 3+, fluorescence in situ hybridization (FISH) was performed to assess HER2 amplification. The association of HER2 amplification with clinicopathological parameters and prognosis was assessed using Fisher's exact test and Kaplan-Meier method, respectively. RESULTS: HER2 expression was consistent between primary tumor and liver metastases in 66.9% (85/127) cases (r = 0.643, p = 0.001). After FISH validation, HER2 amplification was identified in 6.25% (13/208) patients. HER2 amplification was significantly associated with age (p = 0.017), bilobar involvement (p = 0.005) and left-sided RAS/RAF wild-type status (p = 0.002). In the overall cohort, HER2 amplification was correlated with significantly worse relapse-free survival (RFS). Further stratification revealed that among left-sided RAS/RAF wild-type cases, HER2 amplification was significantly associated with worse overall survival (OS) (30.2 vs. 50.9 months, p = 0.040) and RFS (5.77 vs. 19.97 months, p = 0.017). CONCLUSION: HER2 amplification is more enriched in CRLMs with younger age, left-sided RAS/RAF wild-type, and bilobar involvement. Moreover, HER2 amplification predicts a poorer prognosis especially in left-sided RAS/RAF wild-type CRLMs.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Amplificação de Genes , Humanos , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Prognóstico , Receptor ErbB-2/metabolismo
13.
Cell Death Dis ; 13(1): 57, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027547

RESUMO

Tumor metastasis is a hallmark of cancer. The communication between cancer-derived exosomes and stroma plays an irreplaceable role in facilitating pre-metastatic niche formation and cancer metastasis. However, the mechanisms underlying exosome-mediated pre-metastatic niche formation during colorectal cancer (CRC) liver metastasis remain incompletely understood. Here we identified HSPC111 was the leading upregulated gene in hepatic stellate cells (HSCs) incubated with CRC cell-derived exosomes. In xenograft mouse model, CRC cell-derived exosomal HSPC111 facilitated pre-metastatic niche formation and CRC liver metastases (CRLM). Consistently, CRC patients with liver metastasis had higher level of HSPC111 in serum exosomes, primary tumors and cancer-associated fibroblasts (CAFs) in liver metastasis than those without. Mechanistically, HSPC111 altered lipid metabolism of CAFs by phosphorylating ATP-citrate lyase (ACLY), which upregulated the level of acetyl-CoA. The accumulation of acetyl-CoA further promoted CXCL5 expression and secretion by increasing H3K27 acetylation in CAFs. Moreover, CXCL5-CXCR2 axis reinforced exosomal HSPC111 excretion from CRC cells and promoted liver metastasis. These results uncovered that CRC cell-derived exosomal HSPC111 promotes pre-metastatic niche formation and CRLM via reprogramming lipid metabolism in CAFs, and implicate HSPC111 may be a potential therapeutic target for preventing CRLM.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Exossomos , Neoplasias Hepáticas , MicroRNAs , Proteínas/metabolismo , Acetilcoenzima A/metabolismo , Animais , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Exossomos/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , Metástase Neoplásica/patologia
14.
Theranostics ; 12(1): 260-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987644

RESUMO

Purpose: To establish a clinically applicable genomic clustering system, we investigated the interactive landscape of driver mutations in intrahepatic cholangiocarcinoma (ICC). Methods: The genomic data of 1481 ICCs from diverse populations was analyzed to investigate the pair-wise co-occurrences or mutual exclusivities among recurrent driver mutations. Clinicopathological features and outcomes were compared among different clusters. Gene expression and DNA methylation profiling datasets were analyzed to investigate the molecular distinctions among mutational clusters. ICC cell lines with different gene mutation backgrounds were used to evaluate the cluster specific biological behaviors and drug sensitivities. Results: Statistically significant mutation-pairs were identified across 21 combinations of genes. Seven most recurrent driver mutations (TP53, KRAS, SMAD4, IDH1/2, FGFR2-fus and BAP1) showed pair-wise co-occurrences or mutual exclusivities and could aggregate into three genetic clusters: Cluster1: represented by tripartite interaction of KRAS, TP53 and SMAD4 mutations, exhibited large bile duct histological phenotype with high CA19-9 level and dismal prognosis; Cluster2: co-association of IDH/BAP1 or FGFR2-fus/BAP1 mutation, was characterized by small bile duct phenotype, low CA19-9 level and optimal prognosis; Cluster3: mutation-free ICC cases with intermediate clinicopathological features. These clusters showed distinct molecular traits, biological behaviors and responses to therapeutic drugs. Finally, we identified S100P and KRT17 as "cluster-specific", "lineage-dictating" and "prognosis-related" biomarkers, which in combination with CA19-9 could well stratify Cluster3 ICCs into two biologically and clinically distinct subtypes. Conclusions: This clinically applicable clustering system can be instructive to ICC prognostic stratification, molecular classification, and therapeutic optimization.


Assuntos
Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/genética , Colangiocarcinoma/genética , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico
15.
Signal Transduct Target Ther ; 6(1): 397, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34795203

RESUMO

The immunosuppressive microenvironment plays an important role in tumor progression and immunotherapy responses. Golgi membrane protein 1 (GOLM1) is correlated to hepatocellular carcinoma (HCC) progression and metastasis. However, little is known about the role of GOLM1 in regulating the immunosuppressive environment and its impact on immunotherapeutic efficacy in HCC. In this study, GOLM1 was positively correlated with infiltrating tumor-associated macrophages (TAMs) expressed high levels of programmed death-ligand 1 (PD-L1) and CD8+ T cell suppression in HCC tissues. Both gain- and loss-of-function studies determined a close correlation between GOLM1 and immunosuppression. In the mechanism, GOLM1 promoted COP9 signalosome 5-mediated PD-L1 deubiquitination in HCC cells and increased the transport of PD-L1 into exosomes via suppression of Rab27b expression. Furthermore, co-culture with exosomes derived from HCC cells upregulated the expression of PD-L1 on macrophages. Zoledronic acid in combination with anti-PD-L1 therapy reduced PD-L1+ TAMs infiltration and alleviated CD8+ T cell suppression, resulting in tumor growth inhibition in the mouse HCC model. Together, our study unveils a mechanism by which GOLM1 induces CD8+ T cells suppression through promoting PD-L1 stabilization and transporting PD-L1 into TAMs with exosome dependent. Targeting PD-L1+ TAM could be a novel strategy to enhance the efficacy of anti-PD-L1 therapy in HCC.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas Experimentais/imunologia , Proteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas Experimentais/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Proteínas de Neoplasias/genética , Receptor de Morte Celular Programada 1/genética
16.
J Chem Phys ; 155(7): 074301, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418932

RESUMO

Alloy nanoclusters protected by ligands were widely studied due to the synergistic effect of metal atoms, and they exhibit enhanced properties in different fields, such as bio-imaging and catalysis. Herein, we obtained Au8Ag17(PPh3)10Cl10 nanoclusters via one-step simple synthesis. The atomically precise crystal structure was determined by x-ray crystallography. It is found that the rod-like Au8Ag17 nanoclusters were composed of two Au4Ag9 icosahedrons via sharing the same Ag atom. Two Au atoms occupy the center of icosahedrons, and the other six Au atoms are all at the neck sites. Four kinds of Cl-Ag connecting modes were observed in Au8Ag17 nanoclusters. Moreover, the ultraviolet-visible absorption spectrum shows that the prominent absorption peaks of Au8Ag17 nanoclusters are at ∼395 and 483 nm. This work provides a feasible strategy to synthesize alloy nanoclusters with precise composition via doping engineering.

17.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34151937

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, metastasis accounts for most of the cases. Angiogenesis plays an important role in cancer metastasis, but how tumor cells affect the function of endothelial cells by dictating their microRNA (miRNA) expression remains largely unknown. Differentially expressed miRNAs (DEMs) were identified through dataset downloaded from the Gene Expression Omnibus (GEO) database and analyzed by GEO2R. We then used online tools to obtain potential targets of candidate miRNAs and functional enrichment analysis, as well as the protein-protein interaction (PPI). Finally, the function of miR-302c-3p was validated through in vitro assay. In the current study, we found that HCC cells altered miRNA expression profiles of human umbilical vein endothelial cells (HUVECs) and miR-302c-3p was the most down-regulated miRNA in HUVECs when they were co-cultured with HCC-LM3 cells. Functional enrichment analysis of the candidate targets revealed that these genes were involved in epigenetic regulation of gene expression, in particular, cytosine methylation. In addition, PPI network demonstrated distinct roles of genes targeted by miR-302c-3p. Importantly, inhibition of angiogenesis, migration and permeability by the most down-regulated miR-302c-3p in HUVECs was confirmed in vitro. These findings brought us novel insight into the regulation of angiogenesis by HCC cells and provided potential targets for the development of therapeutic strategies.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Endoteliais/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Bases de Dados Genéticas , Células Endoteliais/patologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Permeabilidade , Mapas de Interação de Proteínas , Transdução de Sinais
18.
Hepatology ; 74(5): 2544-2560, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34036623

RESUMO

BACKGROUND AND AIMS: Recently, clinical trials of lenvatinib plus pembrolizumab in HCC have displayed an impressive objective response rate. This study aimed to clarify the mechanism for optimal patient selection. APPROACH AND RESULTS: First, in patients with HCC, lenvatinib-treated recurrent tumors had lower programmed death ligand 1 (PD-L1) expression and regulatory T cell (Treg) infiltration compared with matched primary tumors. Consistently, in C57BL/6 wild-type mice receiving anti-programmed cell death 1 (PD-1) therapy, PD-L1 expression and Treg infiltration in s.c. tumors were reduced when adding lenvatinib to the scheme. Mechanistically, on the one hand, FGF receptor 4 (FGFR4) was the most pivotal target in PD-L1 down-regulation by lenvatinib in vitro. Furthermore, lenvatinib reinforced the proteasomal degradation of PD-L1 by blocking the FGFR4-glycogen synthase kinase 3ß axis and rescued the sensitivity of interferon-γ-pretreated HCC cells to T-cell killing by targeting FGFR4. On the other hand, the level of IL-2 increased after anti-PD-1 treatment, but IL-2-mediated Treg differentiation was blocked by lenvatinib through targeting FGFR4 to restrain signal transducer and activator of transcription 5 (STAT5) phosphorylation. By regulating the variations in the number of Tregs and the tumor FGFR4 level in C57BL/6-forkhead box protein P3 (Foxp3DTR ) mice, we found that high levels of FGFR4 and Treg infiltration sensitized tumors to the combination treatment. Finally, high levels of FGFR4 and Foxp3 conferred immune tolerance but better response to the combined therapy in patient cohorts. CONCLUSIONS: Lenvatinib reduced tumor PD-L1 level and Treg differentiation to improve anti-PD-1 efficacy by blocking FGFR4. Levels of FGFR4 expression and Treg infiltration in tumor could serve as biomarkers for screening patients with HCC using lenvatinib plus anti-PD-1 combination therapy.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Imunidade , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Compostos de Fenilureia/administração & dosagem , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Quinolinas/administração & dosagem , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Animais , Anticorpos Monoclonais/administração & dosagem , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estudos de Coortes , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Resultado do Tratamento
20.
J Hematol Oncol ; 14(1): 16, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446239

RESUMO

BACKGROUND: Dysregulation of both mitochondrial biogenesis and mitophagy is critical to sustain oncogenic signaling pathways. However, the mechanism of mitophagy in promoting hepatocellular carcinoma (HCC) progression remains poorly understood. In this study, we investigated the clinical significance and biological involvement of mitochondrial inner membrane protein STOML2 in HCC. METHODS: STOML2 was identified by gene expression profiles of HCC tissues and was measured in tissue microarray and cell lines. Gain/loss-of-function experiment was applied to study the biological function of STOML2 in HCC. Flow cytometry, Western blotting, laser confocal microscopy, transmission electron microscopy, and co-immunoprecipitation were used to detect and analyze mitophagy. ChIP and luciferase reporter assay were conducted to evaluate the relationship between STOML2 and HIF-1α. The sensitivity to lenvatinib was assessed in HCC both in vitro and in vivo. RESULTS: Increased expression of STOML2 was found in HCC compared with paired peritumoral tissues. It was more significant in HCC with metastasis and correlated with worse overall survival and higher probability of recurrence after hepatectomy. Upregulation of STOML2 accelerated HCC cells colony formation, migration and invasion. Mechanically, TCGA dataset-based analysis showed enrichment of autophagy-related pathways in STOML2 highly-expressed HCC. Next, STOML2 was demonstrated to interact and stabilize PINK1 under cellular stress, amplify PINK1-Parkin-mediated mitophagy and then promote HCC growth and metastasis. Most interestingly, HIF-1α was upregulated and transcriptionally increased STOML2 expression in HCC cells under the treatment of lenvatinib. Furthermore, higher sensitivity to lenvatinib was found in HCC cells when STOML2 was downregulated. Combination therapy with lenvatinib and mitophagy inhibitor hydroxychloroquine obtained best efficacy. CONCLUSIONS: Our findings suggested that STOML2 could amplify mitophagy through interacting and stabilizing PINK1, which promote HCC metastasis and modulate the response of HCC to lenvatinib. Combinations of pharmacologic inhibitors that concurrently block both angiogenesis and mitophagy may serve as an effective treatment for HCC.


Assuntos
Antineoplásicos/farmacologia , Proteínas Sanguíneas/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Mitofagia , Compostos de Fenilureia/farmacologia , Proteínas Quinases/metabolismo , Quinolinas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas/análise , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteínas de Membrana/análise , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitofagia/efeitos dos fármacos , Invasividade Neoplásica/patologia , Compostos de Fenilureia/uso terapêutico , Proteínas Quinases/análise , Quinolinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA